Hsp70 and the Cochaperone StiA (Hop) Orchestrate Hsp90-Mediated Caspofungin Tolerance in Aspergillus fumigatus.
نویسندگان
چکیده
Aspergillus fumigatus is the primary etiologic agent of invasive aspergillosis (IA), a major cause of death among immunosuppressed patients. Echinocandins (e.g., caspofungin) are increasingly used as second-line therapy for IA, but their activity is only fungistatic. Heat shock protein 90 (Hsp90) was previously shown to trigger tolerance to caspofungin and the paradoxical effect (i.e., decreased efficacy of caspofungin at higher concentrations). Here, we demonstrate the key role of another molecular chaperone, Hsp70, in governing the stress response to caspofungin via Hsp90 and their cochaperone Hop/Sti1 (StiA in A. fumigatus). Mutation of the StiA-interacting domain of Hsp70 (C-terminal EELD motif) impaired thermal adaptation and caspofungin tolerance with loss of the caspofungin paradoxical effect. Impaired Hsp90 function and increased susceptibility to caspofungin were also observed following pharmacologic inhibition of the C-terminal domain of Hsp70 by pifithrin-μ or after stiA deletion, further supporting the links among Hsp70, StiA, and Hsp90 in governing caspofungin tolerance. StiA was not required for the physical interaction between Hsp70 and Hsp90 but had distinct roles in the regulation of their function in caspofungin and heat stress responses. In conclusion, this study deciphering the physical and functional interactions of the Hsp70-StiA-Hsp90 complex provided new insights into the mechanisms of tolerance to caspofungin in A. fumigatus and revealed a key C-terminal motif of Hsp70, which can be targeted by specific inhibitors, such as pifithrin-μ, to enhance the antifungal activity of caspofungin against A. fumigatus.
منابع مشابه
Phylogenetic analysis of HSP70 gene of Aspergillus fumigatus reveals conservation intra-species and divergence inter-species
Aspergillus fumigatus is a saprophyte fungus, widely spread in a variety of ecologicalniches and the most prevalent aspergilli responsible for human and animal invasiveaspergillosis. The first step to develop novel and efficient therapies is the identificationand understanding of the key tolerance and virulence factors of pathogens. The mainfocus of the present study is to perform the similarit...
متن کاملClient-loading conformation of the Hsp90 molecular chaperone revealed in the cryo-EM structure of the human Hsp90:Hop complex.
Hsp90 is an essential molecular chaperone required for the folding and activation of many hundreds of cellular "client" proteins. The ATP-dependent chaperone cycle involves significant conformational rearrangements of the Hsp90 dimer and interaction with a network of cochaperone proteins. Little is known about the mechanism of client protein binding or how cochaperone interactions modulate Hsp9...
متن کاملHsp90 regulates the dynamics of its cochaperone Sti1 and the transfer of Hsp70 between modules
The cochaperone Sti1/Hop physically links Hsp70 and Hsp90. The protein exhibits one binding site for Hsp90 (TPR2A) and two binding sites for Hsp70 (TPR1 and TPR2B). How these sites are used remained enigmatic. Here we show that Sti1 is a dynamic, elongated protein that consists of a flexible N-terminal module, a long linker and a rigid C-terminal module. Binding of Hsp90 and Hsp70 regulates the...
متن کاملIn Vitro Antifungal Activity and Mode of Action of 2',4'-Dihydroxychalcone against Aspergillus fumigatus
2',4'-Dihydroxychalcone (2',4'-DHC) was identified from a heat shock protein 90 (Hsp90)-targeting library as a compound with Hsp90 inhibitory and antifungal effects. In the presence of 2',4'-DHC (8 µg/mL), radial growth of Aspergillus fumigatus was inhibited 20% compared to the control, and green pigmentation was completely blocked. The expression of the conidiation-associated genes abaA, brlA,...
متن کاملHeat shock protein 90 is required for conidiation and cell wall integrity in Aspergillus fumigatus.
Heat shock protein 90 (Hsp90) is a eukaryotic molecular chaperone. Its involvement in the resistance of Candida albicans to azole and echinocandin antifungals is well established. However, little is known about Hsp90's function in the filamentous fungal pathogen Aspergillus fumigatus. We investigated the role of Hsp90 in A. fumigatus by genetic repression and examined its cellular localization ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 59 8 شماره
صفحات -
تاریخ انتشار 2015